3.324 \(\int \frac {\sqrt [3]{\sin (a+b x)}}{\sqrt [3]{\cos (a+b x)}} \, dx\)

Optimal. Leaf size=128 \[ -\frac {\log \left (\frac {\sin ^{\frac {2}{3}}(a+b x)}{\cos ^{\frac {2}{3}}(a+b x)}+1\right )}{2 b}+\frac {\log \left (\frac {\sin ^{\frac {4}{3}}(a+b x)}{\cos ^{\frac {4}{3}}(a+b x)}-\frac {\sin ^{\frac {2}{3}}(a+b x)}{\cos ^{\frac {2}{3}}(a+b x)}+1\right )}{4 b}-\frac {\sqrt {3} \tan ^{-1}\left (\frac {1-\frac {2 \sin ^{\frac {2}{3}}(a+b x)}{\cos ^{\frac {2}{3}}(a+b x)}}{\sqrt {3}}\right )}{2 b} \]

[Out]

-1/2*ln(1+sin(b*x+a)^(2/3)/cos(b*x+a)^(2/3))/b+1/4*ln(1-sin(b*x+a)^(2/3)/cos(b*x+a)^(2/3)+sin(b*x+a)^(4/3)/cos
(b*x+a)^(4/3))/b-1/2*arctan(1/3*(1-2*sin(b*x+a)^(2/3)/cos(b*x+a)^(2/3))*3^(1/2))*3^(1/2)/b

________________________________________________________________________________________

Rubi [A]  time = 0.15, antiderivative size = 128, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 8, integrand size = 21, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.381, Rules used = {2574, 275, 292, 31, 634, 618, 204, 628} \[ -\frac {\log \left (\frac {\sin ^{\frac {2}{3}}(a+b x)}{\cos ^{\frac {2}{3}}(a+b x)}+1\right )}{2 b}+\frac {\log \left (\frac {\sin ^{\frac {4}{3}}(a+b x)}{\cos ^{\frac {4}{3}}(a+b x)}-\frac {\sin ^{\frac {2}{3}}(a+b x)}{\cos ^{\frac {2}{3}}(a+b x)}+1\right )}{4 b}-\frac {\sqrt {3} \tan ^{-1}\left (\frac {1-\frac {2 \sin ^{\frac {2}{3}}(a+b x)}{\cos ^{\frac {2}{3}}(a+b x)}}{\sqrt {3}}\right )}{2 b} \]

Antiderivative was successfully verified.

[In]

Int[Sin[a + b*x]^(1/3)/Cos[a + b*x]^(1/3),x]

[Out]

-(Sqrt[3]*ArcTan[(1 - (2*Sin[a + b*x]^(2/3))/Cos[a + b*x]^(2/3))/Sqrt[3]])/(2*b) - Log[1 + Sin[a + b*x]^(2/3)/
Cos[a + b*x]^(2/3)]/(2*b) + Log[1 - Sin[a + b*x]^(2/3)/Cos[a + b*x]^(2/3) + Sin[a + b*x]^(4/3)/Cos[a + b*x]^(4
/3)]/(4*b)

Rule 31

Int[((a_) + (b_.)*(x_))^(-1), x_Symbol] :> Simp[Log[RemoveContent[a + b*x, x]]/b, x] /; FreeQ[{a, b}, x]

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 275

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = GCD[m + 1, n]}, Dist[1/k, Subst[Int[x^((m
 + 1)/k - 1)*(a + b*x^(n/k))^p, x], x, x^k], x] /; k != 1] /; FreeQ[{a, b, p}, x] && IGtQ[n, 0] && IntegerQ[m]

Rule 292

Int[(x_)/((a_) + (b_.)*(x_)^3), x_Symbol] :> -Dist[(3*Rt[a, 3]*Rt[b, 3])^(-1), Int[1/(Rt[a, 3] + Rt[b, 3]*x),
x], x] + Dist[1/(3*Rt[a, 3]*Rt[b, 3]), Int[(Rt[a, 3] + Rt[b, 3]*x)/(Rt[a, 3]^2 - Rt[a, 3]*Rt[b, 3]*x + Rt[b, 3
]^2*x^2), x], x] /; FreeQ[{a, b}, x]

Rule 618

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> Dist[-2, Subst[Int[1/Simp[b^2 - 4*a*c - x^2, x], x]
, x, b + 2*c*x], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 628

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(d*Log[RemoveContent[a + b*x +
c*x^2, x]])/b, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rule 634

Int[((d_.) + (e_.)*(x_))/((a_) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Dist[(2*c*d - b*e)/(2*c), Int[1/(a +
 b*x + c*x^2), x], x] + Dist[e/(2*c), Int[(b + 2*c*x)/(a + b*x + c*x^2), x], x] /; FreeQ[{a, b, c, d, e}, x] &
& NeQ[2*c*d - b*e, 0] && NeQ[b^2 - 4*a*c, 0] &&  !NiceSqrtQ[b^2 - 4*a*c]

Rule 2574

Int[(cos[(e_.) + (f_.)*(x_)]*(b_.))^(n_)*((a_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> With[{k = Denomina
tor[m]}, Dist[(k*a*b)/f, Subst[Int[x^(k*(m + 1) - 1)/(a^2 + b^2*x^(2*k)), x], x, (a*Sin[e + f*x])^(1/k)/(b*Cos
[e + f*x])^(1/k)], x]] /; FreeQ[{a, b, e, f}, x] && EqQ[m + n, 0] && GtQ[m, 0] && LtQ[m, 1]

Rubi steps

\begin {align*} \int \frac {\sqrt [3]{\sin (a+b x)}}{\sqrt [3]{\cos (a+b x)}} \, dx &=\frac {3 \operatorname {Subst}\left (\int \frac {x^3}{1+x^6} \, dx,x,\frac {\sqrt [3]{\sin (a+b x)}}{\sqrt [3]{\cos (a+b x)}}\right )}{b}\\ &=\frac {3 \operatorname {Subst}\left (\int \frac {x}{1+x^3} \, dx,x,\frac {\sin ^{\frac {2}{3}}(a+b x)}{\cos ^{\frac {2}{3}}(a+b x)}\right )}{2 b}\\ &=-\frac {\operatorname {Subst}\left (\int \frac {1}{1+x} \, dx,x,\frac {\sin ^{\frac {2}{3}}(a+b x)}{\cos ^{\frac {2}{3}}(a+b x)}\right )}{2 b}+\frac {\operatorname {Subst}\left (\int \frac {1+x}{1-x+x^2} \, dx,x,\frac {\sin ^{\frac {2}{3}}(a+b x)}{\cos ^{\frac {2}{3}}(a+b x)}\right )}{2 b}\\ &=-\frac {\log \left (1+\frac {\sin ^{\frac {2}{3}}(a+b x)}{\cos ^{\frac {2}{3}}(a+b x)}\right )}{2 b}+\frac {\operatorname {Subst}\left (\int \frac {-1+2 x}{1-x+x^2} \, dx,x,\frac {\sin ^{\frac {2}{3}}(a+b x)}{\cos ^{\frac {2}{3}}(a+b x)}\right )}{4 b}+\frac {3 \operatorname {Subst}\left (\int \frac {1}{1-x+x^2} \, dx,x,\frac {\sin ^{\frac {2}{3}}(a+b x)}{\cos ^{\frac {2}{3}}(a+b x)}\right )}{4 b}\\ &=-\frac {\log \left (1+\frac {\sin ^{\frac {2}{3}}(a+b x)}{\cos ^{\frac {2}{3}}(a+b x)}\right )}{2 b}+\frac {\log \left (1-\frac {\sin ^{\frac {2}{3}}(a+b x)}{\cos ^{\frac {2}{3}}(a+b x)}+\frac {\sin ^{\frac {4}{3}}(a+b x)}{\cos ^{\frac {4}{3}}(a+b x)}\right )}{4 b}-\frac {3 \operatorname {Subst}\left (\int \frac {1}{-3-x^2} \, dx,x,-1+\frac {2 \sin ^{\frac {2}{3}}(a+b x)}{\cos ^{\frac {2}{3}}(a+b x)}\right )}{2 b}\\ &=-\frac {\sqrt {3} \tan ^{-1}\left (\frac {1-\frac {2 \sin ^{\frac {2}{3}}(a+b x)}{\cos ^{\frac {2}{3}}(a+b x)}}{\sqrt {3}}\right )}{2 b}-\frac {\log \left (1+\frac {\sin ^{\frac {2}{3}}(a+b x)}{\cos ^{\frac {2}{3}}(a+b x)}\right )}{2 b}+\frac {\log \left (1-\frac {\sin ^{\frac {2}{3}}(a+b x)}{\cos ^{\frac {2}{3}}(a+b x)}+\frac {\sin ^{\frac {4}{3}}(a+b x)}{\cos ^{\frac {4}{3}}(a+b x)}\right )}{4 b}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 0.04, size = 57, normalized size = 0.45 \[ \frac {3 \sin ^{\frac {4}{3}}(a+b x) \cos ^2(a+b x)^{2/3} \, _2F_1\left (\frac {2}{3},\frac {2}{3};\frac {5}{3};\sin ^2(a+b x)\right )}{4 b \cos ^{\frac {4}{3}}(a+b x)} \]

Antiderivative was successfully verified.

[In]

Integrate[Sin[a + b*x]^(1/3)/Cos[a + b*x]^(1/3),x]

[Out]

(3*(Cos[a + b*x]^2)^(2/3)*Hypergeometric2F1[2/3, 2/3, 5/3, Sin[a + b*x]^2]*Sin[a + b*x]^(4/3))/(4*b*Cos[a + b*
x]^(4/3))

________________________________________________________________________________________

fricas [A]  time = 0.47, size = 144, normalized size = 1.12 \[ \frac {2 \, \sqrt {3} \arctan \left (-\frac {\sqrt {3} \cos \left (b x + a\right ) - 2 \, \sqrt {3} \cos \left (b x + a\right )^{\frac {1}{3}} \sin \left (b x + a\right )^{\frac {2}{3}}}{3 \, \cos \left (b x + a\right )}\right ) - 2 \, \log \left (\frac {\cos \left (b x + a\right )^{\frac {1}{3}} \sin \left (b x + a\right )^{\frac {2}{3}} + \cos \left (b x + a\right )}{\cos \left (b x + a\right )}\right ) + \log \left (\frac {\cos \left (b x + a\right )^{2} - \cos \left (b x + a\right )^{\frac {4}{3}} \sin \left (b x + a\right )^{\frac {2}{3}} + \cos \left (b x + a\right )^{\frac {2}{3}} \sin \left (b x + a\right )^{\frac {4}{3}}}{\cos \left (b x + a\right )^{2}}\right )}{4 \, b} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sin(b*x+a)^(1/3)/cos(b*x+a)^(1/3),x, algorithm="fricas")

[Out]

1/4*(2*sqrt(3)*arctan(-1/3*(sqrt(3)*cos(b*x + a) - 2*sqrt(3)*cos(b*x + a)^(1/3)*sin(b*x + a)^(2/3))/cos(b*x +
a)) - 2*log((cos(b*x + a)^(1/3)*sin(b*x + a)^(2/3) + cos(b*x + a))/cos(b*x + a)) + log((cos(b*x + a)^2 - cos(b
*x + a)^(4/3)*sin(b*x + a)^(2/3) + cos(b*x + a)^(2/3)*sin(b*x + a)^(4/3))/cos(b*x + a)^2))/b

________________________________________________________________________________________

giac [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sin(b*x+a)^(1/3)/cos(b*x+a)^(1/3),x, algorithm="giac")

[Out]

Timed out

________________________________________________________________________________________

maple [F]  time = 0.14, size = 0, normalized size = 0.00 \[ \int \frac {\sin ^{\frac {1}{3}}\left (b x +a \right )}{\cos \left (b x +a \right )^{\frac {1}{3}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sin(b*x+a)^(1/3)/cos(b*x+a)^(1/3),x)

[Out]

int(sin(b*x+a)^(1/3)/cos(b*x+a)^(1/3),x)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sin \left (b x + a\right )^{\frac {1}{3}}}{\cos \left (b x + a\right )^{\frac {1}{3}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sin(b*x+a)^(1/3)/cos(b*x+a)^(1/3),x, algorithm="maxima")

[Out]

integrate(sin(b*x + a)^(1/3)/cos(b*x + a)^(1/3), x)

________________________________________________________________________________________

mupad [B]  time = 1.24, size = 44, normalized size = 0.34 \[ -\frac {3\,{\cos \left (a+b\,x\right )}^{2/3}\,{\sin \left (a+b\,x\right )}^{4/3}\,{{}}_2{\mathrm {F}}_1\left (\frac {1}{3},\frac {1}{3};\ \frac {4}{3};\ {\cos \left (a+b\,x\right )}^2\right )}{2\,b\,{\left ({\sin \left (a+b\,x\right )}^2\right )}^{2/3}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sin(a + b*x)^(1/3)/cos(a + b*x)^(1/3),x)

[Out]

-(3*cos(a + b*x)^(2/3)*sin(a + b*x)^(4/3)*hypergeom([1/3, 1/3], 4/3, cos(a + b*x)^2))/(2*b*(sin(a + b*x)^2)^(2
/3))

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sqrt [3]{\sin {\left (a + b x \right )}}}{\sqrt [3]{\cos {\left (a + b x \right )}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sin(b*x+a)**(1/3)/cos(b*x+a)**(1/3),x)

[Out]

Integral(sin(a + b*x)**(1/3)/cos(a + b*x)**(1/3), x)

________________________________________________________________________________________